If it's not what You are looking for type in the equation solver your own equation and let us solve it.
880=-16t^2+256t
We move all terms to the left:
880-(-16t^2+256t)=0
We get rid of parentheses
16t^2-256t+880=0
a = 16; b = -256; c = +880;
Δ = b2-4ac
Δ = -2562-4·16·880
Δ = 9216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9216}=96$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-256)-96}{2*16}=\frac{160}{32} =5 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-256)+96}{2*16}=\frac{352}{32} =11 $
| 5=-8(6+5n) | | 7c+6.95=74.15 | | 3k-2=55 | | -x+9=4-7x | | 7x+12=2(x+6 | | 6x+15-10=2x+15-x | | -4(b-4)+2b=26 | | -g^2+5=0 | | -t^2+10t-55=0 | | 15+2x=50 | | 6–14k=-20k | | y/2-5/6=y/3 | | 7b/8-15=-1 | | x/21+5=4 | | -4(b4)+2b=26 | | 6x15-10=2x+15-x | | 14/2=x/3 | | 5(t-1)=2t | | 6r+3=7 | | 7p^2-11p+4=0 | | 1/4(8t+12)=2t | | 7+x+x+1=30 | | .3(12x-15)=7 | | -6f^2-5f+9=0 | | 7p^2+11p+4=0 | | (5-q)/6=3 | | 48=16z | | 15h=160 | | 2x-9=95 | | 5p+7=12p+4 | | 0=7/8-x | | -5(r+2)=-57 |